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Integrating waste management, environmental sustainability, and economic 
development is a prime milestone in the circular economy. Critical metals recovery 
from mining tailings and secondary resources has significant potential, with 
widespread applications in high-tech industries that are critical to modern society 
and sustainable development. This book discusses technological advances for 
managing industrial and mining waste through circular economy approaches and 
successful critical metal recovery from secondary resources. It highlights how 
reprocessing of mine waste and tailings results in development of critical raw 
materials that significantly reduce the mining burden and ensure the lucrative use of 
waste materials.

FEATURES:

•	 Describes advances in remediation and valorization technologies for mining 
wastes.

•	 Details biotechnological methods, cutting edge research, and applications.
•	 Covers use of waste mining resources for economic growth and novel 

opportunities.
•	 Discusses IR4.0 and machine learning methods.
•	 Includes reports and case studies on mining waste in value-added products 

and recovery of strategically important critical minerals.

This book will be of value to researchers and advanced students working in the 
mining, chemical and environmental engineering, and renewable energy sectors.



http://taylorandfrancis.com


Sustainable Management of 
Mining Waste and Tailings

A Circular Economy Approach

Edited by  
Alok Prasad Das,  

Eric D. van Hullebusch, and Ata Akçil



Designed cover image: ©Shutterstock Images

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 selection and editorial matter, Alok Prasad Das, Eric D. van Hullebusch, and 
Ata Akçil; individual chapters, the contributors

Reasonable efforts have been made to publish reliable data and information, but the 
author and publisher cannot assume responsibility for the validity of all materials or 
the consequences of their use. The authors and publishers have attempted to trace 
the copyright holders of all material reproduced in this publication and apologize to 
copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we 
may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, 
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or 
other means, now known or hereafter invented, including photocopying, microfilming, 
and recording, or in any information storage or retrieval system, without written 
permission from the publishers.

For permission to photocopy or use material electronically from this work, access 
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC),  
222 Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that are not 
available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered 
trademarks and are used only for identification and explanation without intent to 
infringe.

ISBN: 978-1-032-58081-4 (hbk)
ISBN: 978-1-032-58082-1 (pbk)
ISBN: 978-1-003-44245-5 (ebk)

DOI: 10.1201/9781003442455

Typeset in Times LT Std
by Apex CoVantage, LLC

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003442455


v

Contents
Preface����������������������������������������������������������������������������������������������������������������������� xv
Editors’ Biographies����������������������������������������������������������������������������������������������� xvii
List of Contributors�������������������������������������������������������������������������������������������������� xix

Chapter 1	 Novel Methods and Techniques for the Remediation of  
Mining Waste Residues������������������������������������������������������������������������� 1

S.K. Parida, Abhipsha Satpathy, Adyasha Dalai, Shilpi Kullu, 
Shibanee Hota, and S. Mishra

1.1	 Introduction�������������������������������������������������������������������������������� 1
1.2	 Various Mining Techniques�������������������������������������������������������� 3
1.3	 Environmental Impacts of Mining���������������������������������������������� 4
1.4	 Literature Survey������������������������������������������������������������������������ 5
1.5	 Novel Methods and Techniques�������������������������������������������������� 6
1.6	 Bioremediation��������������������������������������������������������������������������� 8

1.6.1	 In-Situ vs. Ex-Situ Bioremediation������������������������������� 9
1.6.2	 Bioremediation Techniques����������������������������������������� 10
1.6.3	 Factors Influencing Bioremediation���������������������������� 13
1.6.4	 Bioremediation: Some Recent Approaches����������������� 14

1.7	 Remedial Steps in Mining and Metallurgical Waste 
Management����������������������������������������������������������������������������� 16
1.7.1	 Waste Rock, Overburden, Beneficiation  

Waste, and Sludge������������������������������������������������������� 17
1.7.2	 Acid Mine Drainage���������������������������������������������������� 19
1.7.3	 Metallurgical Dust������������������������������������������������������� 19
1.7.4	 Metallurgical Slags������������������������������������������������������ 21
1.7.5	 Post-Consumer Waste�������������������������������������������������� 21

1.8	 Conclusion and Future Trends�������������������������������������������������� 24
Acknowledgment��������������������������������������������������������������������������������� 24
References������������������������������������������������������������������������������������������� 24

Chapter 2	 Emerging and Advanced Green Energy Technologies for  
Mining Pollution Reduction���������������������������������������������������������������� 30

Vinod Kumar Nathan, Kalirajan Arunachalam, Neha Sharma, 
Subbaiya Ramasamy, Manikandan Sivasubramanian,  
Sushma Gautam, S. Rajeshkumar, and R. Mariselvam

2.1	 Introduction������������������������������������������������������������������������������ 30
2.2	 Challenges of Mining Pollution Abatement����������������������������� 31
2.3	 Role of Green Energy Technologies in Pollution  

Reduction���������������������������������������������������������������������������������� 34



vi Contents

2.4	 Hydrogen Fuel Cells in Mining Applications��������������������������� 35
2.4.1	 Haul Trucks and Equipment���������������������������������������� 36
2.4.2	 Drilling Equipment������������������������������������������������������ 37
2.4.3	 Remote Power Generation������������������������������������������� 37
2.4.4	 Material Handling Equipment������������������������������������� 37
2.4.5	 Ventilation Systems����������������������������������������������������� 37
2.4.6	 Backup Power�������������������������������������������������������������� 37
2.4.7	 Hydrogen Production�������������������������������������������������� 37
2.4.8	 Benefits and Challenges of Hydrogen Fuel Cells��������� 37

2.5	 Advanced Water Treatment for Managing Pollutants��������������� 38
2.5.1	 Biosorption������������������������������������������������������������������ 38
2.5.2	 Waste Stabilization Ponds and Constructed  

Wetlands���������������������������������������������������������������������� 38
2.5.3	 Bioremediation������������������������������������������������������������ 40
2.5.4	 Coagulating Sedimentation����������������������������������������� 41
2.5.5	 Nanotechnology���������������������������������������������������������� 41

2.6	 Green Building Design During Mining Operations����������������� 41
2.6.1	 Sustainable Infrastructure Design������������������������������� 42
2.6.2	 Environmental Monitoring and Mitigation����������������� 42

2.7	 Importance of Circular Economy Practices������������������������������ 42
2.7.1	 Projected Sustainable Interventions to Attain 

Circularity as Contrasted with Current Linear 
Economy Outlook������������������������������������������������������� 43

2.7.2	 Recovery Options�������������������������������������������������������� 45
2.8	 Reduction of Emissions by Carbon Capture and  

Storage (CCS)��������������������������������������������������������������������������� 46
2.9	 Future Prospects����������������������������������������������������������������������� 48

2.9.1	 Renewable Energy Integration������������������������������������ 48
2.9.2	 Energy Storage Systems���������������������������������������������� 48
2.9.3	 Equipment Electrification�������������������������������������������� 49
2.9.4	 Carbon Capture and Utilization (CCU)����������������������� 49
2.9.5	 Artificial Intelligence and Data Analytics������������������� 49

References������������������������������������������������������������������������������������������� 49

Chapter 3	 Green Technologies for Mining Waste Management�������������������������� 58

Shilpi Das, Himadri Sahu, and Susmita Mishra

3.1	 Introduction������������������������������������������������������������������������������ 58
3.2	 Classification of Mine Wastes�������������������������������������������������� 59

3.2.1	 Waste Rock������������������������������������������������������������������ 59
3.2.2	 Overburden������������������������������������������������������������������ 60
3.2.3	 Sulfide Minerals���������������������������������������������������������� 60
3.2.4	 Tailings������������������������������������������������������������������������ 61

3.3	 Solid Wastes in Mining: A Global Perspective������������������������� 61
3.4	 Green Technologies for Mining Waste Management��������������� 62

3.4.1	 Geopolymer Technology��������������������������������������������� 62
3.4.2	 Biomining Technology������������������������������������������������ 63



viiContents

3.4.3	 Phytoremediation of Mine Wastes������������������������������� 65
3.4.4	 Landfill Mining����������������������������������������������������������� 67
3.4.5	 Constructed Wetland for Mine  

Drainage Treatment����������������������������������������������������� 68
3.4.6	 Backfilling Mine Cavities�������������������������������������������� 70

3.5	 Towards a Circular Economy��������������������������������������������������� 71
3.6	 Conclusion�������������������������������������������������������������������������������� 71
References������������������������������������������������������������������������������������������� 72

Chapter 4	 Innovative Methods for Remediating Mining Waste Residues����������� 75

Priya Chandulal Vithalani, Priti Khandubhai Mahla,  
Jahnvi Sanjay Padhiar, and Nikhil Bhatt

4.1	 Introduction������������������������������������������������������������������������������ 75
4.2	 Adverse Effect of Environmental Metals��������������������������������� 76
4.3	 Conventional Methods for Metal Ion Remediation������������������ 76

4.3.1	 Chemical Precipitation������������������������������������������������ 77
4.3.2	 Ion Exchange��������������������������������������������������������������� 77
4.3.3	 Membrane Technologies��������������������������������������������� 78
4.3.4	 Electrochemical Technologies������������������������������������� 78
4.3.5	 Adsorption through Waste Materials��������������������������� 79

4.4	 Novel Methods for Metal Ion Remediation������������������������������ 79
4.4.1	 Bioleaching of Metals through Microorganisms��������� 79
4.4.2	 Microbial Fuel Cell����������������������������������������������������� 79
4.4.3	 Nano-biotechnology���������������������������������������������������� 81
4.4.4	 Plant-Mediated Remediation��������������������������������������� 81

4.5	 Conclusion and Future Outlook������������������������������������������������ 83
4.5.1	 Sustainable Tailings Control���������������������������������������� 84
4.5.2	 Bioleaching and Biooxidation������������������������������������� 84
4.5.3	 Phytoremediation�������������������������������������������������������� 84
4.5.4	 Enhanced Geo-Polymerisation������������������������������������ 84
4.5.5	 Artificial Intelligence and Data Analytics������������������� 84
4.5.6	 Nanotechnology���������������������������������������������������������� 84
4.5.7	 Circular Economy Concepts���������������������������������������� 85

References������������������������������������������������������������������������������������������� 85

Chapter 5	 Advanced Technologies for Green Energy Generation,  
Carbon Neutrality, and Mining Waste Management��������������������������� 90

Elif Tüzün and Selcan Karakuş

5.1	 Introduction������������������������������������������������������������������������������ 90
5.2	 Green Energy Technology�������������������������������������������������������� 93
5.3	 Carbon Neutrality and Carbon Capture������������������������������������ 94

5.3.1	 Gold Mining���������������������������������������������������������������� 95
5.3.2	 Copper Mining������������������������������������������������������������ 96
5.3.3	 Arsenic and Antimony Mining������������������������������������ 96



viii Contents

5.3.4	 Lead and Zinc Mining������������������������������������������������� 97
5.3.5	 Uranium Mining���������������������������������������������������������� 97

5.4	 Managing Mining Waste����������������������������������������������������������� 98
5.5	 Development of Mining Waste into Adsorbents for  

Toxic Materials Removal���������������������������������������������������������� 99
5.6	 Nanotechnology in Energy Materials������������������������������������� 101
5.7	 Conclusion������������������������������������������������������������������������������ 102
References����������������������������������������������������������������������������������������� 103

Chapter 6	 Bioremediation as a Sustainable and Circular Solution for 
Mining Waste Management and Bioenergy Generation�������������������� 107

Sudeshna Dey, Akanshya Dash, and Alok Prasad Das

6.1	 Introduction���������������������������������������������������������������������������� 107
6.2	 Sources of Mining Waste�������������������������������������������������������� 109
6.3	 Impacts of Mining Waste�������������������������������������������������������� 109
6.4	 Present-day Disposal Methods and Futuristic  

Approaches����������������������������������������������������������������������������� 111
6.5	 Sustainable and Circular Solutions for Mining Waste������������ 112
6.6	 Bioremediation of Mining Waste to Produce Bioenergy�������� 114
6.7	 Conclusion������������������������������������������������������������������������������ 116
References����������������������������������������������������������������������������������������� 116

Chapter 7	 Machine Learning Applications in Mining Waste Management������� 120

Abdul Akbar

7.1	 Introduction���������������������������������������������������������������������������� 120
7.1.1	 Waste Rock���������������������������������������������������������������� 120
7.1.2	 Mine Tailings������������������������������������������������������������� 120
7.1.3	 Mine Dust������������������������������������������������������������������ 121
7.1.4	 Mine Water���������������������������������������������������������������� 121

7.2	 What Is Machine Learning?��������������������������������������������������� 121
7.3	 Steps for ML Model Development����������������������������������������� 123

7.3.1	 Exploratory Data Analysis and Data  
Visualization�������������������������������������������������������������� 123

7.3.2	 Data Pre-Processing�������������������������������������������������� 123
7.3.3	 Data Splitting������������������������������������������������������������� 123
7.3.4	 Model Development�������������������������������������������������� 123
7.3.5	 Hyperparameter Tuning��������������������������������������������� 124
7.3.6	 Model Evaluation and Selection�������������������������������� 125

7.4	 Applications of ML���������������������������������������������������������������� 126
7.4.1	 ML Application in Waste Management��������������������� 127
7.4.2	 Waste Segregation����������������������������������������������������� 127
7.4.3	 Waste Quantification������������������������������������������������� 128
7.4.4	 Waste Treatment�������������������������������������������������������� 128

7.5	 ML Assisted Mine Waste Management���������������������������������� 128



ixContents

7.5.1	 Estimation of Toxic Chemicals in Mine Waste��������� 128
7.5.2	 ML Assisted Mining Safety Evaluation�������������������� 133
7.5.3	 ML Assisted Mine Waste Treatment������������������������� 136
7.5.4	 ML Assisted Recovery from Mine Waste������������������ 137
7.5.5	 ML Assisted Mine Waste Recycling������������������������� 139

7.6	 Future Prospects��������������������������������������������������������������������� 140
7.7	 Conclusion������������������������������������������������������������������������������ 141
References����������������������������������������������������������������������������������������� 141

Chapter 8	 Bioprocesses for Sustainable Management of Mine Waste in 
Contaminated Environmental Matrices��������������������������������������������� 146

Vaishakh Nair, Aparna Singh, and Nisarga K. Gowda

8.1	 Introduction���������������������������������������������������������������������������� 146
8.1.1	 Health Hazards Caused by Mining Wastes��������������� 147
8.1.2	 Biological Remediation of Mining Wastes���������������� 148
8.1.3	 Limitations and Challenges of Biologically 

Remediating Mining Wastes�������������������������������������� 149
8.2	 Bioremediation of Mining Wastes from Aqueous Media������� 150

8.2.1	 Bioaugumentation����������������������������������������������������� 151
8.2.2	 Phycoremediation������������������������������������������������������ 153
8.2.3	 Algae, Bacteria and Biochar Consortium������������������ 153
8.2.4	 Phytoremediation������������������������������������������������������ 154
8.2.5	 Biostimulation����������������������������������������������������������� 155

8.3	 Bioremediation of Mining Wastes from Soil Media��������������� 155
8.3.1	 Bioremediation by Microorganism��������������������������� 157
8.3.2	 Phytoremediation������������������������������������������������������ 157
8.3.3	 Microbe-Plant Associated Bioremediation���������������� 158
8.3.4	 Mycoremediation������������������������������������������������������ 161

8.4	 Bioremediating Mine Wastes in Air��������������������������������������� 161
8.4.1	 Microbial Remediation���������������������������������������������� 162
8.4.2	 Phytoremediation (Active Botanical  

Biofiltration)�������������������������������������������������������������� 162
8.4.3	 Phylloremediation����������������������������������������������������� 163
8.4.4	 Phycoremediation������������������������������������������������������ 163
8.4.5	 Air Pollution Remediation with Nanomaterials�������� 164

8.5	 Applying the Circular Economy in Bioprocessing of 
Mine Wastes���������������������������������������������������������������������������� 164
8.5.1	 Bioleaching���������������������������������������������������������������� 166
8.5.2	 Phytomining�������������������������������������������������������������� 166
8.5.3	 Recovery by Microorganism������������������������������������� 167
8.5.4	 Producing Microalgae Biomass from Gaseous 

Pollutants������������������������������������������������������������������� 168
8.6	 Conclusion������������������������������������������������������������������������������ 170
References����������������������������������������������������������������������������������������� 171



x Contents

Chapter 9	 Use of Machine Learning Techniques in Mining Waste 
Treatment: Example and Applications in Turkey������������������������������ 179

Hasan Volkan Oral and Hasan Saygın

9.1	 Introduction���������������������������������������������������������������������������� 179
9.1.1	 Environmental Impacts of Mining Wastes���������������� 179
9.1.2	 Application of the Circular Economy Model������������ 180
9.1.3	 Machine Learning Approaches to Mining 

Waste Management��������������������������������������������������� 180
9.1.4	 Mining Operations in Turkey������������������������������������ 181

9.2	 Materials and Methods����������������������������������������������������������� 181
9.2.1	 Machine Learning Application���������������������������������� 181
9.2.2	 Integrating the Circular Economy Model 

Application���������������������������������������������������������������� 183
References����������������������������������������������������������������������������������������� 185

Chapter 10	 Sustainable Management of Bauxite Residue: Opportunities and 
Challenges����������������������������������������������������������������������������������������� 187

Pradip Kumar Pattajoshi and Aditya Kishore Dash

10.1	 Introduction���������������������������������������������������������������������������� 187
10.2	 Constituents of Bauxite���������������������������������������������������������� 187
10.3	 Generation Scenario of Red Mud������������������������������������������� 189
10.4	 Red Mud Composition and Characteristics���������������������������� 191
10.5	 Environmental Impacts of Red Mud�������������������������������������� 192
10.6	 Opportunities and Challenges for Handling, Storing,  

and Using Red Mud���������������������������������������������������������������� 193
10.7	 Challenges for Management of Red Mud������������������������������ 196
10.8	 Conclusion������������������������������������������������������������������������������ 197
References����������������������������������������������������������������������������������������� 198

Chapter 11	 Advancing Mining Sustainability Metrics: The Ecological 
Engineering Nexus Accounting Framework (EENAF)��������������������� 203

Y. Schoeman and P.J. Oberholster

11.1	 Introduction���������������������������������������������������������������������������� 203
11.1.1	 Background and Significance of Mining 

Sustainability������������������������������������������������������������� 203
11.1.2	 Ecological Engineering as a Solution for 

Sustainable Mining���������������������������������������������������� 204
11.1.3	 Purpose of the Chapter: Introducing the  

EENAF Framework��������������������������������������������������� 204
11.2	 The Ecological Engineering Nexus Accounting 

Framework (EENAF)������������������������������������������������������������� 205
11.2.1	 Overview of the EENAF Framework������������������������ 205



xiContents

11.2.2	 Integration of Ecological, Social, and Economic 
Dimensions���������������������������������������������������������������� 206

11.2.3	 Application of the Framework to an Open-Cast 
Iron Ore Mine in the Limpopo Region  
of South Africa���������������������������������������������������������� 207

11.3	 Multi-Scale Integrated Analysis of Societal and 
Ecosystem Metabolism (MUSIASEM) Bio-economic 
Valuation��������������������������������������������������������������������������������� 209
11.3.1	 Introduction to MUSIASEM and its Role  

in the EENAF Framework����������������������������������������� 209
11.3.2	 Assessment of Societal and Ecosystem 

Metabolism in Mining Projects��������������������������������� 210
11.3.3	 Benefits and Limitations of MUSIASEM  

in Evaluating Ecological Engineering  
Initiatives������������������������������������������������������������������� 213

11.4	 Novel Typology for Nature-Based Systems in the  
Mining Sector������������������������������������������������������������������������� 214
11.4.1	 Importance of Nature-Based Systems in  

Mining Sustainability������������������������������������������������ 214
11.4.2	 Introduction of the Novel Typology in the 

EENAF Framework��������������������������������������������������� 214
11.4.3	 Application of the Typology to Assess  

the Effectiveness of Nature-Based Systems  
in Mining������������������������������������������������������������������� 215

11.5	 Standardized Metrics in the EENAF Framework������������������� 216
11.5.1	 Overview of the Standardized Metrics  

Employed in the EENAF Framework����������������������� 216
11.5.2	 Gross Ecosystem Product (GEP) as a  

Measure of Ecological Engineering Impact�������������� 217
11.5.3	 Industry Value Added (IVA) Linked to  

Ecosystem Services��������������������������������������������������� 218
11.5.4	 Monetary Ecosystem Asset Value and 

its Significance in Evaluating Ecological 
Engineering Projects������������������������������������������������� 218

11.5.5	 Cost of Degradation (CoD) as a Metric for 
Assessing the Negative Impacts of Mining��������������� 219

11.5.6	 Example Application������������������������������������������������� 220
11.6	 Empowering Stakeholders through the EENAF  

Framework������������������������������������������������������������������������������ 223
11.6.1	 Target Stakeholders: Policymakers, Investors,  

and Project Developers���������������������������������������������� 223
11.6.2	 Benefits of the EENAF Framework in  

Decision-Making Processes�������������������������������������� 224
11.6.3	 Comparison and Benchmarking Across  

Projects and Regions for Informed  
Decision-Making������������������������������������������������������� 225



xii Contents

11.7	 Alignment with Global Sustainability Objectives������������������ 225
11.7.1	 United Nations Sustainable Development  

Goals (SDGs) and their Relevance to the  
EENAF Framework������������������������������������������������� 225

11.7.2	 Valuation of Environmental, Social, and 
Governance (ESG) Investments������������������������������ 225

11.8	 Assessing Broader Societal Implications of Ecological 
Engineering Projects��������������������������������������������������������������� 228
11.8.1	 Beyond Economic Considerations: Social 

Implications of Ecological Engineering������������������ 228
11.8.2	 Evaluating the Broader Societal Impact  

of Mining Projects Using the EENAF  
Framework��������������������������������������������������������������� 229

11.9	 Transformative Impact and Future Directions������������������������ 229
11.9.1	 Transcending Disciplinary Boundaries in 

Ecological Engineering Economics������������������������ 229
11.9.2	 Advancing the Understanding of Ecological 

Engineering’s Broader Impact in Mining���������������� 230
11.9.3	 Potential Applications of and Future  

Directions for the EENAF Framework�������������������� 230
11.10	 Conclusion������������������������������������������������������������������������������ 230

11.10.1	 Summary of Key Points������������������������������������������� 230
11.10.2	 Importance of the EENAF Framework for 

Advancing Sustainable Solutions in Ecological 
Engineering and Mining Sustainability������������������� 231

References����������������������������������������������������������������������������������������� 231

Chapter 12	 Management and Recycling of Mining Wastes with  
Zero Waste Adaptation Technology as a Tool for  
Sustainable Environmental Management������������������������������������������ 233

Himansu Sekhar Patra and Aditya Kishore Dash

12.1	 Introduction���������������������������������������������������������������������������� 233
12.1.1	 The Mining Scenario in India���������������������������������� 234
12.1.2	 Distribution and Location of Mines  

in India��������������������������������������������������������������������� 235
12.1.3	 Mining Waste: A Global Concern��������������������������� 236

12.2	 Environmental Impacts of Mining Waste������������������������������� 238
12.2.1	 Management of Mine Wastewater��������������������������� 241
12.2.2	 Sustainable Mining Waste Management����������������� 243

12.3	 Mining and the Circular Economy����������������������������������������� 246
12.4	 Conclusion������������������������������������������������������������������������������ 249
References����������������������������������������������������������������������������������������� 249



xiiiContents

Chapter 13	 Sustainable Remediation Methods for Mining Wastes��������������������� 254

Alessia Corami

13.1	 Introduction���������������������������������������������������������������������������� 254
13.2	 Remediation Technologies����������������������������������������������������� 256
13.3	 Chemical Treatments�������������������������������������������������������������� 256

13.3.1	 Biochar���������������������������������������������������������������������� 257
13.3.2	 Phytoremediation������������������������������������������������������ 258
13.3.3	 Phytoremediation and Microorganisms��������������������� 260
13.3.4	 Microbes and Bacteria����������������������������������������������� 261
13.3.5	 Clay��������������������������������������������������������������������������� 266
13.3.6	 Sludge������������������������������������������������������������������������ 267

13.4	 Further Amendments�������������������������������������������������������������� 268
13.5	 Conclusion������������������������������������������������������������������������������ 271
References����������������������������������������������������������������������������������������� 272

Chapter 14	 Sustainable Strategies for Metal Mining Solid Waste 
Management through Vermitechnology�������������������������������������������� 289

Samrudhi Nayak and C.S.K. Mishra

14.1	 Introduction���������������������������������������������������������������������������� 289
14.2	 Adverse Effects of Mine Debris��������������������������������������������� 290
14.3	 Vermitechnology: A Sustainable Strategy for  

Eco-Restoration���������������������������������������������������������������������� 292
14.3.1	 Earthworms as Soil Engineers����������������������������������� 292
14.3.2	 Vermitechnology Can Protect the Green  

Canvas����������������������������������������������������������������������� 294
14.3.3	 Earthworms Can Remediate Soil Metal 

Contamination����������������������������������������������������������� 294
14.3.4	 Earthworm and Organic Inputs Facilitate  

Mine Spoil Reclamation�������������������������������������������� 295
14.4	 Conclusion������������������������������������������������������������������������������ 297
References����������������������������������������������������������������������������������������� 297

Chapter 15	 Development of Novel Processes and Products  
from Mining Residues����������������������������������������������������������������������� 301

Abhinay Thakur and Ashish Kumar

15.1	 Introduction���������������������������������������������������������������������������� 301
15.1.1	 Background��������������������������������������������������������������� 301
15.1.2	 Environmental and Social Challenges in the 

Mining Industry��������������������������������������������������������� 303
15.1.3	 Resource Recovery from Mining Residues��������������� 304



xiv Contents

15.2	 Innovative Processes for Recovery and Transformation�������� 306
15.2.1	 Hydrometallurgical Techniques��������������������������������� 306
15.2.2	 Pyrometallurgical Techniques����������������������������������� 307
15.2.3	 Bioleaching Approaches�������������������������������������������� 308
15.2.4	 Emerging Technologies: Plasma Processing and 

Electrochemical Recovery����������������������������������������� 311
15.3	 Applications of Recovered Materials������������������������������������� 313

15.3.1	 Construction Materials���������������������������������������������� 313
15.3.2	 Catalysts�������������������������������������������������������������������� 314
15.3.3	 Energy Storage Devices�������������������������������������������� 315
15.3.4	 Fertilizers������������������������������������������������������������������� 317
15.3.5	 Other Potential Applications������������������������������������� 318

15.4	 Challenges and Opportunities������������������������������������������������� 319
15.4.1	 Market Demand for Novel Products�������������������������� 320
15.4.2	 Regulatory Considerations���������������������������������������� 320
15.4.3	 Economic and Environmental Challenges����������������� 321

15.5	 Conclusion������������������������������������������������������������������������������ 322
15.5.1	 Summary of Key Points��������������������������������������������� 322
15.5.2	 Future Prospects and Research Directions���������������� 323

References����������������������������������������������������������������������������������������� 323

Index....................................................................................................................... 331



xv

Preface
The earth’s environment is a natural ecosystem that has its own remedial control, but 
the present rate of natural resource exploitation and depletion promotes destructive 
ecosystems patterns. Extensive mining activities have resulted in soil erosion, sink-
holes, damage to biodiversity, and pollution of soil, groundwater, and surface water 
by the toxic chemicals and heavy metals released from mining processes. Mining 
affects fresh water through heavy use of water in processing ore, and through water 
pollution from discharged mine effluent and seepage from tailings and waste rock 
impoundments. These human activities have created inconsistencies in the ecosys-
tems with devastating outcomes. For the sake of current and future generations, we 
need to safeguard the environment against increased rates of mining and mineral 
processing. We need to ensure the best pollution-prevention strategies are employed 
in cases where the risks can be managed. The universal environmental complications 
demand a greener solution underlying unity between the global environmental prob-
lems irrespective of their intricacy and executing solutions. Critical metals recovery 
from tailings and secondary resources has significant potential for the future, as its 
applications are widespread in high-tech industries that are critical to modern society 
and sustainable development.

Integrating waste management through environmental sustainability and eco-
nomic development is one of the prime milestones in the circular economy. There 
is an exigent need for developing countries to move towards a circular economy 
in order to achieve their sustainable development goals. Greener technologies are 
a novel archetype that promotes financial progress and environmental sustainabil-
ity at the same time. This book will elucidate the growing application of greener 
technology with a circular economic approach and examine the connections among 
environment, economy, and ecology for an emerging and supportable human society.

The book will focus on numerous features of environmental sustainability and 
identify the technologies and methods essential to managing growing volumes of 
mining and mineral processing wastes. It will also describe the biotechnological 
methods, cutting-edge research, applications, and procedures required to safeguard 
sustainable development along with mining waste management. This book will 
focus on the role of green engineering technologies for sustainable mining and min-
eral processing waste management in building an economically viable society as a 
basic need of developing countries, and will also highlight how mine tailings can be 
re-processed to produce critical raw materials (CRMs) that could significantly reduce 
the mining burden and ensure the lucrative use of mining waste materials.
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1.1 � INTRODUCTION

Due to the significant growth in population and rising demand for natural resources 
globally, mining activity has significantly expanded (Reichl et al., 2016). Exploration, 
mine development, mineral beneficiation, metal extraction, smelting, refining, recla-
mation, and clean-up are all part of the complicated process known as mining, and 
they all generate a large quantity of waste. Society demands proper management of 
waste (Bakken, 2007) to address the hazards generated by the waste’s toxicity, flam-
mability, reactivity, corrosivity, and other factors. Waste management practices that 
lessen or eliminate the dangers are necessary in these kinds of situations (Mishra 
et al., 2019; Fernandez-Naranjo et al., 2020).

Mineral extraction waste normally falls into three categories: (i) solid wastes 
such as waste rock, dust, sludge, slurries, and slags; (ii) liquid wastes such as waste-
water and effluents; and (iii) gaseous emissions (Lottermoser et  al., 2011; Ndlovu 
et  al., 2017). To minimize negative environmental consequences, waste is held in 
tailing ponds, dams, or tips, in line with local waste-control treatment rules that 
apply to each mining area, or recycled if physically possible (Pasariello et al., 2002; 
Hudson-Edwards and Dold, 2015). Each of these methods may be considered harm-
ful depending on how it affects the soil, surface water, groundwater, plants, and even 
the neighbouring human population (Tew et al., 2018; Iribar et al., 2000). Inert struc-
tures cause no harm to human health or the environment.

We have touched on the more general environmental and economic concerns 
related to garbage mishandling and given a quick summary of the difficulties in 
managing waste. Let’s break down and discuss the key points we have raised:

	 i.	Waste Generation and Mismanagement: Waste is an inevitable byproduct 
of industrial processes. Inadequate waste management practices, such as 
open dumping and burning, contribute to environmental degradation, air 
pollution, and health hazards. In many cases, waste mismanagement stems 
from a lack of proper infrastructure, awareness, and resources.
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	 ii.	Disparity in Waste Management Approaches: While waste management 
strategies may be similar between developed and developing countries, the 
implementation and effectiveness of these strategies can vary significantly. 
Developing countries often face challenges in funding, infrastructure devel-
opment, and public awareness, which can hinder the proper execution of 
waste management programs.

	 iii.	Hurdles in Waste Management Programs: Insufficient waste management 
technologies, equipment, and capital investment pose significant hurdles in 
establishing effective waste management programs. Additionally, the lack 
of protective measures for workers involved in waste management can con-
tribute to health and safety concerns.

	 iv.	Citizen Participation and Awareness: The success of waste management 
programs depends on citizen participation and awareness. Lack of knowl-
edge about proper waste disposal, recycling, and the environmental impacts 
of mismanagement can lead to continued dumping and burning of waste, 
exacerbating the problem.

	 v.	Economic Factors: Economic challenges, such as limited funding and 
resources, can hinder the development and maintenance of waste man-
agement infrastructure. This can lead to a cycle where inadequate waste 
management affects the environment, which, in turn, can impact the local 
economy.

	 vi.	Multinational Companies and Hazardous Waste: Some multinational com-
panies’ practice of relocating their operations to less developed countries 
can lead to disparities in waste management practices. Regulations and tech-
nologies used in their home countries may be stricter or more advanced, 
potentially leading to increased environmental risks in the host countries.

	 vii.	Mining and Environmental Impact: The production of valuable geological 
elements from the planet and other celestial objects is known as mining. 
Most substances that cannot be cultivated through farming or generated 
artificially in a laboratory or factory must be mined. Iron ore, bauxite, cop-
per, tin, nickel, manganese, tantalum, cassiterite, gold, silver, diamonds, oil 
shale, gemstones, limestone, chalk, dimension stone, rock salt, gravel, and 
clay are among the ores extracted by mining (Balaram, 2019). Mining is a 
complex process that involves various stages, from exploration to cleanup. 
While mining plays a crucial role in resource extraction, it can also have 
significant environmental impacts, including habitat destruction, water pol-
lution, and soil degradation. Proper management and regulations are essen-
tial to minimize these negative effects (Bennamoun, 2012).

Here you might ask, why is it necessary to study this subject in such depth? Are 
mining wastes really so hazardous to mankind? The answer to the second question is 
a simple yes. Not all waste is eco-friendly and should be left unattended and exposed. 
The three most frequent throwaways are waste rock, tailings, and mine water. If 
wastes are abandoned for a long time, they leach metalloids, heavy metals (copper 
lead, mercury), acids, and radioactive elements into the soil, contaminating the rich 
top layer, surface water, groundwater, useful microbes, and so on. Furthermore, 4% 
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to 7% of greenhouse gas (CO, CO2, SO2, NOx, PM) emissions come from mining 
sources (Alloway, 1995; Pérez Cebada, 2016; Durucan et al., 2006).

Effective waste management is a multifaceted challenge that requires a combi-
nation of technological innovation, regulatory enforcement, public awareness, and 
sustainable practices. Addressing waste mismanagement in developing countries 
involves overcoming economic, social, and infrastructural barriers. Collaborative 
efforts between governments, industries, communities, and international organiza-
tions are vital to improving waste management practices, reducing environmental 
harm, and promoting sustainable development (Paul et  al., 2023; Pradhan et  al., 
2023). Similarly, responsible mining practices are essential to minimize the environ-
mental footprint of mining activities and ensure the long-term well-being of ecosys-
tems and communities.

1.2 � VARIOUS MINING TECHNIQUES

•	 Artisanal mining:—An artisanal miner, also known as a small-scale miner 
(ASM), is a subsistence miner who is not officially employed by a min-
ing company but works independently, mining minerals using their own 
resources, usually by hand (Schwartz et al., 2021). Artisanal miners often 
mine seasonally; for example, crops are planted in the rainy season, and 
mining is pursued in the dry season. However, they also commonly travel to 
mining locations and work year-round (Buss et al., 2019).

•	 Surface mining:—Surface mining includes the removal of surface plants, 
soil, dust, and bedrock to access subsurface ore reserves. It is an alternative 
to underground mining, in which the overlying rock is left in place and the 
required mineral resources are extracted via shafts or tunnels. Surface mining 
is a technique for extracting sand, gravel, stones, coal, iron, and other metals.

•	 Highwall mining:—When surface mining has reached its economic strip-
ping ratio, highwall mining is a way to enhance coal recovery, in which the 
continuous miner is remotely deployed beneath highwall mining with no 
crew access. Compared to underground mining, highwall mining has sev-
eral advantages, including a higher level of safety due to the use of remote-
controlled cutter heads (Ross et al., 2019). It also requires a small team of 
only three or four persons.

•	 Underground mining:—Underground mining is used to harvest ore from 
beneath the earth’s surface in a safe, cost-effective, and waste-free manner. 
An adit, shaft, or decline is a horizontal or vertical tunnel that connects the 
surface to an underground mine. Underground mines are created by exca-
vating vertical shafts or horizontal adits to reach buried ore deposits. Under-
ground mining is more expensive than surface mining (Afum et al., 2021). 
Coal businesses, for example, must dig more depth and employ sophisti-
cated equipment to collect materials.

Minerals are heavily used and exported by China, which is the biggest miner in the 
world. China mined over 4.1 billion metric tonnes of metals, including non-ferrous 
and other metals, as well as fossil fuels and iron in 2018, the most recent year for 
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which data is available from the World Mining Congresses. Nearly 3.5 billion tonnes 
of coal, which is classified as a mineral fuel, were dug up, making China the single 
largest contributor of coal to this statistic. China mined more than 200 million tonnes 
of iron, the nation’s second most-excavated mineral after coal. Similar to China, 
many of the top-ten nations in terms of mining output relied virtually entirely on 
mineral fuels. Saudi Arabia is known for its significant oil reserves and plays a cru-
cial role in global oil production. Indonesia, too, is a major player in the energy sector, 
with coal being a notable component of its mining output. Australia and Brazil are 
major players in the global iron ore market, with extensive reserves and significant 
mining operations. The data analysis implies that, out of the total iron production 
worldwide, the combined output from Australia and Brazil fell within the specified 
range of 47% to 62%. Therefore, Australia and Brazil collectively contributed to a 
significant portion of the world’s iron production. The United States likewise relied 
largely on mineral fuels, though not solely (Hodge et al., 2022).

1.3 � ENVIRONMENTAL IMPACTS OF MINING

Mining practices, both direct and indirect, can have an impact on the environment 
at the local, regional, and global levels. The chemicals produced by mining activities 
can cause erosion, sinkholes, biodiversity loss, and contamination of soil, groundwa-
ter, and surface water. These processes also affect the climate through emissions of 
carbon, which influences human wellness and the environment (Sonter, 1892).

•	 Erosion:—Water available for plant growth can be reduced due to soil 
erosion, resulting in a decrease in plant population (Moreno-de las Heras, 
2009). Excessive rainfall, lack of soil management, and chemical expo-
sure from mining are the primary causes of soil erosion (Wantzen and Mol, 
2013). Mining in wilderness areas has the potential to devastate ecosystems 
and habitats (Zhang et al., 2015).

•	 Sinkholes:—Sinkholes are mainly caused by the collapse of the mine roof 
as a result of resource extraction, unstable overburden, or geological discon-
tinuities at mine sites. Cracks in the subsoil or rock can be caused by over-
burden at mine sites, which can be filled with sand and soil from the layers 
above. The overburden voids have the potential to collapse and generate a 
sinkhole at the surface, which can be dangerous to life and property (Singh 
and Dhar, 1997).

•	 Water pollution:— Mining can cause various detrimental effect on surface 
water and groundwater. The enormous amounts of water used during mine 
drainage, mine cooling, aqueous extraction, and other mining processes 
increase the likelihood of these chemicals contaminating ground- and sur-
face water.

•	 Air pollution:—Surface mines may generate dust as a result of blasting 
operations and transport routes. Methane, a greenhouse gas, is emitted by 
many coal mines. Heavy metals, sulfur dioxide, and other pollutants may 
be released into the atmosphere by smelter operations that do not have ade-
quate safeguards in place.
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•	 Impacts on biodiversity:—The primary cause of biodiversity loss is habi-
tat destruction, although direct poisoning from mine-extracted material, as 
well as indirect poisoning through food and water, can also damage animals, 
flora, and microbes.

•	 Impacts on aquatic organisms:—Rainwater or surface drainage transports 
acid from the mine site and deposits it in surrounding streams, rivers, and 
lakes. AMD decreases water quality significantly, can destroy aquatic life, 
and renders water essentially useless.

•	 Impacts on humans:—Mining has an impact on humans as well. When 
contaminants released during the mining process come in contact with water 
bodies and soil, they can cause several diseases. Approximately 30% of the 
world’s populace has access to fresh water that is renewable, which is used 
by businesses that discharge massive amounts of chemical effluents into 
freshwater (Schwarzenbach et al., 2010). The Dabaoshan mine, an aban-
doned mine in China, was the subject of research because the impact of met-
als collecting on organisms, water bodies, and soil was a significant problem 
for nearby villages (Zhuang et al., 2009).

Some research has pointed out the effects of mining on the soil. To begin, the con-
taminants and quantity of components in various soil levels must be inspected, and 
sediment must be established to define the margins of safety (Salomons et al. 1995). 
The concentration of these trace elements in the mine, as well as their likelihood of 
creating acid mine drainage, the principal and secondary minerals in the waste, and 
the mobility of the hazardous elements must next be evaluated (Pérez-Santana et al., 
2007; Zhang et al., 2015).

1.4 � LITERATURE SURVEY

We are going to outline a number of findings and patterns about the writing of arti-
cles about waste management, specifically with regard to mining and metallurgical 
wastes. Let’s break down and discuss the key points we’ve mentioned:

	 i.	Publication Trends: The field of waste management, particularly in the con-
text of mining and metallurgical wastes, has seen irregular patterns of arti-
cle publication since its inception in 1992 (Aznar-Sanchez et al., 2018). The 
number of articles published each year has varied.

	 ii.	Key Journals: Several prominent journals have been focal points for publish-
ing articles in this field. Notable journals include Ecological Engineering, 
Minerals, Environmental Earth Science and Pollution Research, The Jour-
nal of Environmental Management, The Journal of Geochemical Explora-
tion, and The Journal of Hazardous Materials (Aznar-Sanchez et al., 2018). 
These journals serve as platforms for sharing research and insights related 
to waste management and its environmental implications.

	 iii.	Environmental Laws and Social Awareness: Over the years, environ-
mental laws and social awareness programs have played a role in raising 
awareness about the potential environmental threats posed by mining and 
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metallurgical wastes (Matinde et al., 2018). These laws and programs have 
been established to promote responsible mining practices, address contam-
ination concerns, and emphasize the importance of rehabilitating affected 
environments.

	 iv.	Circular Economy Model: The circular economy model, which focuses 
on reducing, recycling, and reusing materials, has gained prominence in 
addressing waste management challenges associated with mining and met-
allurgical activities. This model aims to minimize waste generation and pro-
mote the sustainable use of resources.

	 v.	Sustainability Concept: The concept of sustainability encompasses eco-
nomic, environmental, and social dimensions. Sustainable development 
requires balancing economic viability, ecological integrity, and social 
well-being for present and future generations (Popovic et al., 2015). How-
ever, mining activities, including waste management, often create tensions 
and conflicts among these three dimensions (Velasco-Munoz et al., 2018).

	 vi.	Focus on Waste Reuse: A significant number of publications—70.6% of 
the total analyzed articles—emphasize the reuse of waste materials (Aznar-
Sanchez et al., 2018). This highlights the importance of exploring ways to 
repurpose waste products to minimize their impact on the environment and 
potentially create economic value.

	 vii.	Profitable Processes and Environmental Impact: A subset of articles (17.6%) 
specifically addresses profitable processes for recovering polluted soils 
(Aznar-Sanchez et al., 2018). This indicates a recognition of the economic 
potential associated with remediating contaminated sites and reusing waste 
materials.

	 viii.	 Institutional Cooperation for Profitability and Environmental Impact: Some 
studies aim to examine how institutional cooperation can contribute to the 
development of waste management projects that enhance profitability while 
reducing environmental impact. This highlights the importance of collabo-
ration between various stakeholders to achieve both economic and environ-
mental goals.

In conclusion, our observations shed light on the dynamic and multidimensional 
nature of waste management in the context of mining and metallurgical activities. 
The evolution of publication trends; the emphasis on waste reuse; and the challenges 
of reconciling economic, environmental, and social sustainability underscore the 
complexity of addressing waste management issues in this field. Continued research, 
collaboration, and innovation will be essential for developing effective strategies that 
align with sustainable development principles.

1.5 � NOVEL METHODS AND TECHNIQUES

Every method and technique of bioremediation discovered has always brought with 
it some pros and cons. Some have been a blessing for mankind while others have 
caused catastrophes, and each discovery is followed by a flood of questions and 
possibilities: questions regarding the method’s suitability, adaptability, efficiency, 
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accessibility, remuneration, prospects, short- and long-term effects on our surround-
ings (ecosystems and organisms from microscopic and macroscopic levels), and so 
on. How is it going to affect our economy, through investments in scientific research 
and development, and later manpower and technological inputs for implementation? 
These techniques provide opportunities for the use of fossil fuels, renewable energy, 
and energy conservation that are sufficiently adaptable and flexible to be used in 
other domains. These ruminations can be scientific, philosophical, or ethical. But, as 
members of the science community, let’s dive deeper into the scientific approaches 
and discuss methods and techniques for the remediation of mining waste residues 
(Reichl et al., 2016).

Biodegradation technologies have shown promise in the field of newly occurring 
adulterants (Bakken, 2007). Emerging contaminants (EC) refer to a diverse group of 
synthetic or naturally occurring compounds that have been recently detected in the 
environment but are not yet regulated. These compounds include pharmaceuticals, 
personal care products, endocrine disruptors, and other chemicals that can have poten-
tial adverse effects on ecosystems and human health. Various techniques have been 
embraced for the management of debris and contaminants resulting from industrial 
projects, including physical, chemical, and biological techniques, as well as, more 
recently, advanced techniques such as membrane technologies, enhanced oxidation pro-
cesses, and nanotechnology. Oxidation processes involve the introduction of oxidizing 
agents to transform contaminants into less harmful substances. Advanced Oxidation 
Processes (AOPs) utilize powerful oxidants like ozone, hydrogen peroxide, and ultra-
violet (UV) light to generate reactive species that can degrade pollutants. Membrane 
technologies, such as reverse osmosis and nanofiltration, use semi-permeable mem-
branes to separate contaminants from water. They are particularly useful for remov-
ing dissolved pollutants, including emerging contaminants. Figure 1.1 lists four major 
methods for the treatment of emerging contaminants in our ecosystems.

FIGURE 1.1  Treatment methods for emerging contaminants.
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1.6 � BIOREMEDIATION

Bioremediation uses naturally occurring microorganisms, plants as well as fungi, to 
break down hazardous pollutants into safe inorganic components. Living creatures 
are used to remove, neutralize, or immobilize toxins from the polluted site (Gidarakos 
and Aivalioti, 2007; Das et al., 2006; Johnson, 2014). Bioremediation attracted public 
scrutiny in the 1960s, after many experiments were conducted. Bioremediation advo-
cate Robinson George catalogued numerous applications of the technique during the 
1970s (Adams et al., 2015). It is cost-effective, environmentally friendly, and safe. 
Agrochemicals, pesticides, xenobiotics, radioactive waste, heavy metals, chlorinated 
compounds, agrochemicals, dyes, greenhouse gases, and hydrogen gas are among 
the pollutants that can be removed using bioremediation. Here the microorganisms 
used depend on environmental adulterants and bring about a decline in the compo-
sition of the adulterant. The population of microorganisms declines as they consume 
the adulterants, because less food (i.e. adulterants) is available.

Bioremediation can use indigenous or non-indigenous microorganism. Indigenous 
or “native” microorganisms are those that pre-exist in the contaminated area. However, 
suitable oxygen levels, a stable soil temperature, and the nutrients necessary for the 
microorganisms’ growth must all be present to promote the growth of this category of 
microbes (Fantroussi and Agathos, 2005; Naik and Duraphe, 2012; Boopathy, 2002). 
Exogenous microorganisms are added to the contaminated soil to compensate for the 
absence of biological processes necessary for the breakdown of pollutants. To guar-
antee the microorganisms’ survival in the new environment, managers must provide 
the external oxygen and nutrients the microorganisms need to survive, and might 
also need to change the site circumstances such as the deficiency of certain elements 
that the microbes may require to work more efficiently. However, it is important for 
microbes to perform bioremediation changes according to different longitudes, lati-
tudes, regions, temperature, environmental conditions, soil pH, humidity, etc. For the 
best possible results from bioremediation, it is necessary to properly analyze and test 
each site that needs to be remediated. The type of microorganisms present, the site’s 
environment, the volume and toxic effect of the contaminants, and other elements all 
play a part in determining the specific bioremediation technique. Different kinds of 
microbes interact with particular kinds of pollutants and can survive in various envi-
ronments (Fantroussi and Agathos, 2005; Naik and Duraphe, 2012; Boopathy, 2002).

Bioremediation technologies have many applications, including the following:

	 i.	Clean-up of oil spills, which often kill aquatic organisms and are one of 
the most common forms of pollution in areas with significant oil reserves: 
Bioremediation involves introducing bacteria that devour the spilled oil. 
Dispersants are typically used to help the process.

	 ii.	Treatment of rivers, estuaries, and streams: Bioremediation is used to 
remove pollutants such as pesticides and fertilizers.

	 iii.	Sewage treatment: Wastes and chemicals combine to create sewage that can 
be handled throughout the recycling procedure. The mentioned procedure 
delivers the best value in terms of effectiveness and cost (Velasco-Munoz 
et al., 2018).

	 iv.	Compost bioremediation: By combining the composts, the bacteria present 
in the compost remove contaminants from polluted soil areas. This form of 
bioremediation is highly effective.
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	 v.	Bioremediation sometimes involves using genetic engineering to trans-
form natural decomposers into extremely powerful “super-decomposers,” 
which accelerates the elimination of environmental pollutants (Popovic 
et al., 2015).

There are many benefits to bioremediation. These include its cost-effectiveness 
compared to more conventional methods, which require extensive clean-up of the 
dangerous material before and after the operation. The method is simple to use and 
may be completed on-site without interfering with the microbes’ regular activities, 
thereby avoiding the expense of moving the garbage off-site and any potential risks 
to the environment and public health. Additionally, this method takes less time than 
most conventional methods. Since it is a non-intrusive strategy, the site may be used 
continuously. Additionally, bioremediation enables a high level of contamination 
clearance. Despite all of its benefits, there are a few drawbacks to bioremediation. 
Only biodegradable pollutants can be remedied by microbes. In other instances, the 
pollutants are changed into intermediary substances that might be more harmful 
than the original substances. In addition, bioremediation is thought to take longer 
than alternative techniques such as complete excavation of the toxic soil. It is also 
challenging to scale up bioremediation procedures from different batches and small 
scales to higher-scale applications (Desai et al., 2010).

1.6.1 � In-Situ vs. Ex-Situ Bioremediation

Bioremediation can be accomplished in two ways: in-situ and ex-situ. In the former, 
toxic metals are removed and remediated at the point of origin, whereas ex-situ pro-
cedures involve transporting the excavated polluted medium from the site of origin 
to another location for remediation. Figure 1.2 presents different types of ex-situ and 
in-situ bioremediation, with examples.

In the in-situ approach, the polluted soil is cleaned on-site, using a care-
fully selected bioremediation technique. Since it does not call for the removal of 

FIGURE 1.2  Ex-situ and in-situ bioremediation.
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contaminated soils, it is less expensive and produces far less dust than the ex-situ 
approach, but it can also be slower and more difficult to control. It is most effective 
when used on permeable soils. In the aerobic in-situ approach, the organisms partic-
ipating in the bioremediation are supplied with oxygen and nutrients, often by means 
of hydrogen peroxide injection or venting (Folch et al., 2013; Frascari et al., 2015; 
Roy et al., 2015). The ex-situ method, which entails either the removal of contami-
nated dirt or the pumping of contaminated groundwater before treatment, has been 
effectively used for many different categories of contaminants since it is simpler, less 
expensive, and easier. Ex-situ methodology comprises both slurry and solid-phase 
bioremediation, when promotion of remediation is crucial. Slurry phase bioremedi-
ation is a batch treatment approach in which excavated soil or sediments are com-
bined with water and treated in bioreactor vessels or ponds. When contrasted with 
the slurry phase method, bioremediation of the solid phase is substantially simpler 
in application, requires more room, and takes longer to complete (Frutos et al., 2012; 
Smith et al., 2015).

In-situ bioremediation comprises two major types of technique: intrinsic and 
engineered.

Commonly referred to as the “natural reduction process,” the intrinsic method 
involves passively cleaning up contaminated areas without the help of outside forces 
or human involvement, by stimulating the neighbourhood or natural population of 
microorganisms. The breakdown of the contaminated ingredients that consists of the 
recalcitrant sections is dependent on aerobic and anaerobic processes. Because exter-
nal inputs are not used, this method is less expensive than other in-situ procedures. 
In the engineered method, genetically modified microbes are added to the polluted 
area, accelerating the clean-up process by improving the physicochemical conditions 
that encourage microbial development.

1.6.2 � Bioremediation Techniques

There are many different bioremediation techniques, technologies, and strategies, 
but the most widely used ones are windrows, bioreactors, bioventing, bio-slurping, 
bio-sparging, phytoremediation, and permeable reactive barriers. Figure 1.2 shows 
the different types of bioremediation technique for mine waste management.

1.6.2.1 � Microbial Bioremediation
This method uses bacteria to convert dangerous pollutants into harmless forms. The 
division of labour, immobilization, and concentration of contamination levels caused 
by the interactions between the pollutants and the bacteria enable this (Perez-Santana 
et al., 2007; Zhang et al., 2015).

1.6.2.2 � Phytoremediation
This inexpensive, solar-powered cleaning system uses vegetation for in-situ pollutant 
deterioration, removal, or restriction in soil, sludge, sediments, or groundwater. If the 
levels of toxins are high, the plants used for clean-up may perish. If the contaminated 
region is very large, a bigger surface area of the plantation is necessary for effective 
bioremediation (Meagher, 2000; Kuiper et al., 2004).
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1.6.2.3 � Mycoremediation
Fungi, and primarily mushrooms, are used in this bioremediation process. The 
strategy relies on the performance of the enzymes the fungi create when breaking 
down various substrates. Fungi can be used in addition to the enzymatic process 
of biosorption, in which pollutants are ingested by the mushrooms and stored in 
their mycelium, rendering the mushrooms inedible. In the maritime environment, 
Aspergillus, Pleurotus, and Trichoderma have been proven to be beneficial in remov-
ing lead, nickel, cadmium, arsenic, iron, and mercury.

1.6.2.4 � Bio-Pile
In this method, hazardous soil is dug up and stacked aboveground, aerated, and 
replenished with nutrients to increase the microbial metabolic rate. The method uses 
oxygenation, soaking, fertilizers, and techniques for gathering leachate and process-
ing bed systems. Due to its cost-effective qualities, which enable excellent command 
of operational biotransformation components such as pH, nutrients, temperature, and 
oxygenation, this ex-situ technology is being assessed with increasing frequency. 
The bio-pile is used to deal with unstable low-molecular-weight adulterants, and it 
can also be used to clean up heavily contaminated, extremely cold, and harsh envi-
ronments (Gomez et al., 2014; Dias et al., 2015). A warm-up arrangement may be 
incorporated into the design of the bio-pile to encourage pollutant availability and 
microbial activity, which promote biodegradation, thereby allowing the bio-pile to be 
adapted for a shorter remediation duration. Warm air can be included in the bio-pile 
to provide air and heat concurrently, improving biotransformation. To accelerate the 
remediation process, bulking agents including wood chips, bark, sawdust, and other 
organic matters have been added to a bio-pile construction. The bio-pile arrangement 
is related to other ex-situ biotransformation methods such as cropland, bioventing, 
and bio-sparging, but its implementation faces unique hurdles including strong engi-
neering, high cost of operation and maintenance, and lack of electrical power for air 
circulation at remote locations. Furthermore, significant air warming can result in 
topsoil drying, which reduces important microbial activities and hence encourages 
volatilization instead of biodegradation of pollutants (Whelan et al., 2015).

1.6.2.5 � Cropland Farming
Cropland farming involves excavation and tilting of polluted soil. Although it is used 
most frequently in ex-situ bioremediation, it can be used in-situ as well, depending 
on the site location. Adulterant deepness is crucial in cropland farming. In ex-situ 
bioremediation, the noxious soil is removed and treated on-site. To aid aerobic diges-
tion by native microorganisms, excavated dirty soils are typically deposited on a 
stable supporting layer above the ground surface. Cropland farming is generally an 
easy-to-execute technology with low capital costs, which can be used to remediate 
massive amounts of contaminated soil with minimal energy consumption or ecolog-
ical impacts (Silva-Castro et al., 2012; Lee, 2013).

1.6.2.6 � Windrows
Windrows are a set of bioremediation procedures in which mounds of contaminated 
soil are regularly turned over to increase the microbial breakdown of native and 
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transfers hydro-carbon plastic. The rate of bioremediation, which can be carried 
out via acclimatization, biotransformation, or mineralization, is accelerated by the 
repeated turning of polluted soil, which increases oxygenation and ensures equita-
ble dispensation of nourishments, pollutants, and microbial deterioration activities. 
Windrow treatment has shown a much faster rate of hydrocarbon removal than has 
the bio-pile treatment, although the overall effectiveness at removing hydrocarbons 
from the soil is lower for the former. Moreover, regular turning combined with wind-
row treatment is not the best approach for the bioremediation of soil contaminated 
with dangerously unstable compounds. Due to the anaerobic zone that forms inside 
heaped dirty soil after windrow treatment, the technique has been linked to the pro-
duction of greenhouse gases (CH4) (Coulon et al., 2010; Hobson et al., 2005).

1.6.2.7 � Bio-Slurping
This system brings together vacuum-assisted pumping, soil vapor extraction, and 
venting to deliver oxygen indirectly and promote biodegradation of adulterants, 
including volatile and semi-volatile chemicals, in organic soils and groundwater. 
This strategy was developed for product recuperation. It is appropriate for the reme-
diation of semi-volatile and volatile organic compound-polluted soils. Products from 
saturated and unsaturated areas will be recovered via the use of the bio-slurping 
technology, light non-aqueous phase fluids, and capillary remediation. In this 
method, liquids are drawn up with the use of a free product layer known as a “slurp” 
that unfurls into it. Light non-aqueous phase liquids are transported upward by the 
pumping machine and separated from air and water at the surface. The moisture con-
tent of the soil lowers microbial activity by decreasing air permeability and oxygen 
transfer rate. Although this technique is not ideal for rehabilitating low-permeability 
soils, it is an economical method that consumes little groundwater, thereby lowering 
costs for storage, treatment, and disposal (Gidarakos and Aivalioti, 2007; Rawat and 
Rangarajan, 2019).

1.6.2.8 � Bioreactor
In this approach, polluted soil samples are placed in a bioreactor, a device that uti-
lizes a sequence of biological reactions to transform raw substances into particular 
commodities. Different operational modes are used in batch, fed-batch, sequencing 
batch, continuous, and multistage bioreactors. Conditions regarding the growth of 
bioremediation are perfect in bioreactors. Bioreactors have several advantages over 
ex-situ bioremediation techniques. By providing greater control over temperature, 
substrate, inoculum concentration, pH, agitation, and aeration, they allow for faster 
bioremediation. This ability to control and modify procedure parameters in a biore-
actor suggests that biological reactions can be altered and controlled. The flexibility 
of bioreactor designs allows for optimum biological deterioration while minimizing 
abiotic losses (Mohan et al., 2004).

1.6.2.9 � Bio-Sparging
Biosparging involves introducing air into the subsurface of polluted soil to promote 
microbial activity. It is similar to bioventing, which entails the introduction of air 
into the unsaturated zones, which may aid in the volatile organic molecules’ upward 
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migration to the unsaturated zone and hence speed up the process of biodegrada-
tion. In in-situ air sparging (IAS), which is closely connected to venting and soil 
vapor extraction (SVE), contaminant volatilization depends on high air-flow rates. 
The effectiveness of biosparging is primarily determined by soil permeability and 
pollutant biodegradability. It has been most commonly used to clean up kerosene- 
and diesel-fuel-contaminated aquifers (Rawat and Rangarajan, 2019).

1.6.2.10 � Permeable Reactive Barrier (PRB)
PRB is an in-situ method for removing heavy metals and chlorinated chemicals from 
contaminated groundwater by means of biological mechanisms such as precipita-
tion, degradation, and sorption (Obiri-Nyarko et al., 2014). Alternative names for the 
methodology have been suggested, including biological PRB, bio-enhanced PRB, 
and submissive bio-reactive barricade, to accommodate its various bioremediation 
and biotechnological features.

1.6.2.11 � Bioventing
In this method, the flow of air is deliberately stimulated by supplying oxygen to 
the area that isn’t saturated, increasing the activity of the localized microorganisms 
responsible for bioremediation. Amendment here is in context of the modifications 
created with the addition of moisture is largely utilized to speed up the bioremedi-
ation procedure. Among the different in-situ approaches, this method has attracted 
particularly significant attention. The contaminants are rendered safe through trans-
formation at the microbial level. The modifications created with the addition of 
moisture are largely used to speed up the bioremediation procedure. Among the dif-
ferent in-situ approaches, this method has attracted particularly significant attention 
(Kulshreshtha et al., 2014; Kour et al., 2021).

1.6.3 � Factors Influencing Bioremediation

Microorganisms’ enzymatic metabolic pathways advance chemical reactions that aid 
in the breakdown of pollutants. The microbes act on the pollutants only when in 
contact with substances that help produce energy and nutrients for nutrient multipli-
cation. The effectiveness of the bioremediation process is influenced by the contam-
inants’ concentration and chemical makeup, and by the ease with which they can be 
accessed by the original microbes. The main determinants include the number of 
microorganisms present, the environment’s makeup, soil pH, temperature, nutrients, 
and oxygen content (Cases et al., 2005).

The effectiveness of bioremediation is determined by biotic and abiotic factors. 
Biological factors such as biomass production, gene horizontal transfer, enzyme 
activity, mutation, and population size and composition help promote antagonistic 
associations between protozoa or microorganisms and bacteriophages, as well as the 
disintegration of various organic pollutants by bacteria with insufficient sources of 
carbon (Adams et al., 2015). The rate of degradation is mostly affected by the catalyst 
used in the biochemical reaction as well as the nature of the contaminants present. 
Abiotic factors such as soil structure, temperature, oxygen content, redox potential, 
toxicity, solubility, moisture, nutrients, pH, kinds, and concentration all affect how 
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successfully pollutants and bacteria interact, as do the physicochemical character-
istics of the microorganisms used in the restoration process. In most earthbound 
environments, pH levels in the 6.5–8.5 range are ideal for the biodegradation of 
contaminants. Since it depends on the kind and amount of readily accessible soluble 
components, as well as osmotic pressure and pH, moisture affects the breakdown of 
contaminants (Lee and Lee, 2004).

Table 1.1 lists the factors affecting bioremediation and the roles played by each 
factor.

1.6.4 � Bioremediation: Some Recent Approaches

Bioremediation offers a wide range of unexplored and alluring options for research 
in bioinformatics, an interdisciplinary field that combines biology and computer 

TABLE 1.1
Factors Affecting Bioremediation And Their Roles

Factors Role

Bioavailability of pollutants •	 Irreversible sorption
•	 Incorporation into humic matters
•	 Equilibrium sorption

Surface factors •	 Availability of electron acceptors
•	 Chemical structure of contaminants
•	 Solubility of contaminants
•	 Concentration of contaminants
•	 Toxicity of contaminants
•	 Microbial population at the site
•	 Biological aerobic versus anaerobic process
•	 Oxidation/reduction potential

Mass transfer limitations •	 Diffusion of nutrients
•	 Oxygen diffusion and solubility
•	 Miscibility/Solubility with/in water

Environmental factors •	 Lack of nutrients
•	 Depletion of preferential substrates
•	 Inhibitory environmental conditions

Microbial factors •	 Enrichment of the capable microbial populations
•	 Enzyme induction
•	 Mutation and horizontal gene transfer
•	 Production of toxic metabolites
•	 Growth of microorganisms takes place till the biomass has 

reached its critical production

Growth of microbes, and  
co-metabolism

•	 Alternate carbon source present
•	 Type of contaminants
•	 Microbial interaction
•	 Concentration
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science (Hussain et  al., 2009). In bioinformatics, information about DNA, RNA, 
and proteins is stored, manipulated, recovered, and distributed using computer tech-
nologies. Bioremediation can be advanced using “omics”-based techniques, such 
as genomics, transcriptomics, interactomics, proteomics, and metabolomics. These 
approaches require a substantial amount of data from various sources, such as pro-
tein sequence, biology and physiology, comparative genomics, chemical structure, 
reactivity of organic compounds, and environmental biology. Bioinformatics helps 
to correlate DNA sequences with the amount of mRNA, proteins, and metabolites, 
providing a more accurate and comprehensive picture of in-situ bioremediation.

	 i.	Proteomics and metabolomics: While metabolomics is concerned with the 
quantification and characterization of all total metabolites produced by 
an organism at a certain time or under specific conditions, proteomics is 
concerned with the total number of proteins expressed in a cell at a spe-
cific location and time (Khardenavis et al., 2007). The quantity of proteins 
and changes in their composition can be detected using proteomics-based 
research, and key proteins involved in the physiological reactions of 
microbes to anthropogenic contaminants can also be found (Qureshi et al., 
2007). Functional study of microbial communities is more insightful and 
holds greater promise than genomics.

		    Two primary approaches are used in metabolomics research to assess 
biological systems. The first is a broad, unfocused research approach for 
which prior knowledge of the metabolic pathways of the biological system 
is not required. This method assists in the identification and recovery of a 
wide variety of metabolites present in the sample, producing a vast amount 
of data that can be compared between samples to ascertain the interconnec-
tion of metabolic pathways. The second method involves designing a study 
specifically to identify particular metabolic pathways or metabolites using 
information already available (Gupta et al., 2020). The microbial metabolo-
mics toolbox includes numerous methods, such as target analysis, metabolic 
fingerprinting, and metabolite profiling, for the detection and measurement 
of a wide variety of cellular metabolites. Identification of the active chemi-
cals required for cell-free bioremediation will be aided by the integration of 
proteome and metabolome data.

	 ii.	Genomics: A variety of microorganisms can be used in bioremediation 
(Singh et al., 2006; Pandey et al., 2019). Genomic research is a burgeon-
ing field in the study of microbial strains involved in bioremediation (Dey 
et al., 2023). This approach examines every piece of genetic data present 
in a microbe’s cell. PCR, micro assay analysis, DNA hybridization, iso-
tope distribution analysis, molecular connectivity, metabolic engineering, 
and metabolic foot printing are used to explain biodegradation pathways 
and improve the biodegradation process. Numerous genotypic fingerprint-
ing methods based on PCR are available for microbial communities that 
have been mixed up, including amplified fragment length polymorphisms 
(AFLP), automated ribosomal intergenic spacer analysis (ARISA), ampli-
fied ribosomal DNA restriction analysis (ARDRA), terminal-restriction 
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fragment length polymorphism (T-RFLP), single strand conformation 
polymorphism (SSCP), randomly generated polymorphism (RGP). DNA 
analysis can be employed in examining fundamentally connected bacterial 
species, genetic fingerprinting, and structural and functional interpretation 
of soil microbial communities (McGrath et al., 2008). LH-PCR can be used 
to identify the natural length variations of different SSU rRNA genes within 
microbial communities. T-RFLP can be used to simultaneously profile 
microorganisms from various taxonomic groups in an environment (Ishii 
et al., 2015).

	 iii.	Transcriptomics: An essential connection between the cellular phenotype, 
genome, interactomics, and proteome is the transcriptome, which is a col-
lection of genes that are transcribed under specified circumstances and at 
specific times. Gene expression regulation is a crucial process for adapt-
ing to environmental changes and, ultimately, for survival. Transcriptomics 
investigates this process across all of the genome. A particularly effective 
tool in transcriptomics for assessing the level of mRNA expression is DNA 
micro assay analysis. Transcriptomics research includes the extraction and 
enrichment of total mRNA, cDNA synthesis, whole cDNA transcriptome 
sequencing, and microarray hybridization of cDNA. The valuable transcrip-
tomics technology known as the DNA microarray can be used to analyse 
and investigate virtually every gene’s expression in an organism’s mRNA 
(Pandey et al., 2019). By analysing transcriptional mRNA patterns, tran-
scriptomics and metatranscriptomics are valuable for learning about the 
functions of environmental microbial communities (McGrath et al., 2008). 
It has been demonstrated that metagenomics, along with genome binning, 
metagenomics, and transcriptomics, can provide information on microbial 
relationships, syntrophism, and complementary metabolic pathways during 
the biodegradation process (Ishii et al., 2015).

	 iv.	Metatranscriptomics: This is a potent approach for gathering qualitative 
along with quantitative gene expression data (Giovanella et al., 2020).

1.7 � REMEDIAL STEPS IN MINING AND 
METALLURGICAL WASTE MANAGEMENT

The mining and metallurgical industries continue to produce a lot of garbage, despite 
long-term efforts to reduce this quantity. This waste stream is one of the biggest in 
the world. Environmental laws and social awareness campaigns have been imple-
mented over time to reduce the potential risks to humans and the environment posed 
by mining and metallurgical wastes.

Waste is produced in a variety of ways, and the volume and composition of this 
waste are heavily influenced by consumption patterns as well as the industrial and 
economic systems that are in place. Standard waste management practices have until 
now concentrated on managing how the waste is produced and disposed of. Industrial, 
mining, and metallurgical wastes are typically abandoned and/or landfilled since they 
are thought to have little to no obvious economic purpose.
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The mining and metal extraction sectors can be combined to create a circular 
economy model that supports zero waste through the recycling and re-use of waste 
products. To put it another way, many waste streams can be thought of as secondary 
sources of valuable minerals and metals (Pradip et al., 2019). The recycling of mine 
wastes, according to Lotter Moser, involves extracting new valuable resource ele-
ments from the waste, using the waste as feedstock, or turning the entire waste stream 
into a new valuable product (Lebre et al., 2017). Recyclability is the ability of waste 
products to be collected, transformed into new material, or repurposed. The ability to 
recycle a material depends on the availability of technology, processes, and markets 
for recovered goods. The World Steel Association (2015) defines re-use broadly as 
using an item or substance more than once for the same or a related purpose without 
significantly changing the item’s physical shape. Creating financial assets, improving 
resource efficiency by reducing linear resource consumption, reducing waste produc-
tion and accumulation, and encouraging innovation and growth of new technologies 
are just a few of the short- and long-term benefits of recycling and reusing mining 
and metal extraction wastes (Hegab et al., 2023). Increasing recycling and re-use of 
mining wastes can provide sustainable and cost-effective alternatives to traditional 
disposal methods, thereby reducing the environmental impact of disposal and con-
serving resources. While challenges exist, advances in technology and innovative 
approaches are continually being explored to address these issues and maximize the 
value and sustainability of mining waste re-use. Balancing economic, environmen-
tal, and social considerations is key to achieving successful and responsible waste 
management practices in the mining industry (Lebre et al., 2017).

The sections that follow provide an overview of recycling and re-use possibilities 
for specific kinds of mining and metal extraction wastes, based on the new paradigm 
for turning wastes into useful resources. Table 1.2 lists and describes the types of 
waste.

1.7.1 � Waste Rock, Overburden, Beneficiation Waste, and Sludge

Waste rock and overburden are typically considered low-grade minerals that are not 
economically viable for extraction. They can find new life as construction materials 
(e.g., aggregates, backfill, landscaping), waste repository capping, mine revegetation 
substrates, and other applications. Reusing waste rock and overburden reduces the 
need for virgin resources and minimizes environmental disruption from disposal. 
Beneficiation waste consists of tailings and residual materials from mineral process-
ing. Tailings can be reprocessed to recover metals and compounds, offering a second 
chance for resource extraction. Different types of tailings have specific reuse poten-
tials, such as sand-rich tailings for backfill and clay-rich tailings for soil improve-
ment or manufacturing purposes. Mine drainage sludges can be treated to extract 
valuable metals or used for water treatment applications. Phlogopite-rich tailings and 
ultramafic tailings can be utilized in sewage treatment, glass manufacturing, and 
rock wool production. Sandy soils can be improved using clay-rich tailings, and var-
ious tailings types can be used for ceramics, cement, tiles, and bricks.

While there are significant opportunities for reusing these wastes, there are also 
challenges. The complex mineralogy and heterogeneous composition of these waste 
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TABLE 1.2
Overview of Wastes Produced in the Mining and Metals Extraction Industry 
(Kalisz et al., 2022; Whitworth et al., 2022)

Types of waste Comment

Overburden Soil and rock that has been dug up and heaped up to gain access 
to mineral resources. Overburden typically has a low risk of 
contaminating the environment, although acid rock discharge can 
occur.

Waste rock Mineral concentrations in waste rock are thought to be too low for 
profitable extraction. Due to the deposition of wastes from various 
mine sources, waste rock has a heterogeneous mineralogical 
composition and a variety of chemical and physical properties. Waste 
rock can be a concern because acid rock (mine) drainage can arise 
depending on the material being extracted.

Mineral beneficiation  
tailings

Fine, lifeless rock that is left behind after the precious components 
have been removed through processing. Tailings are typically 
deposited into tailings ponds as water-based slurry and may also 
contain leftover chemicals.

Metallurgical slags Materials that resemble glass or are amorphous and are created as by-
products of smelting and refining metals. The presence of entrained 
and/or dissolved heavy metals makes it difficult to reuse some 
slags, even though they have found broad use in the building and 
agricultural industries and can be environmentally safe.

Wastewater Emanates from a variety of processes, with varied levels of purity and 
the potential to pollute the environment. Mine water, process (mill) 
water, leachate (containing dissolved minerals, chemicals, and/or 
metals), effluent (process water discharged into surface water, often 
after treatment), and mine drainage water are typical examples.

Water treatment sludge Slurry or residue that is still semi-solid after mine and industrial 
wastewater and water have been treated locally. Heavy metals and 
other leftover compounds may be present in sludge. There is a lot of 
research being done on the recycling and recovery of precious metals 
from industrial and mining sludges. Waste treatment sludges are 
categorized as hazardous materials depending on the methods.

Acid mine drainage (AMD) Acid mine drainage (AMD) is produced by tailings, waste materials, 
and/or mining infrastructure like underground workings and closed 
active or abandoned pits.

Gaseous and particulate 
emissions

Atmospheric emissions from the high-temperature chemical 
processing of metals include particle dust and poisonous gases 
including SOx, NOx, CO, CO2, organometallic compounds, 
polychlorinated-p-dibenzodioxins, and dibenzofurans (PCCD/Fs). 
In most jurisdictions, these emissions are categorized as hazardous 
materials due to the entrained poisonous heavy metals, toxic 
organometallic compounds, and PCCD/Fs.

Post-consumer waste Produced by consumers in homes, businesses, industries, and institutions 
when products are no longer useful. One example is e-waste.
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materials can impact their suitability for reuse in specific applications. High con-
centrations of transition metals, hazardous elements, and reactive minerals in min-
ing and beneficiation wastes need to be carefully managed to prevent environmental 
damage. Careful assessment and management of potential environmental impacts, 
such as acid rock drainage and contamination, are crucial when considering recy-
cling and re-use options.

1.7.2 �A cid Mine Drainage

Acid mine drainage (AMD) is the result of acidic, sulphate- and metal-containing 
wastewater being discharged into the environment. Sulphide-containing minerals, 
when exposed to oxygen, water, and acidophilic chemolithotrophic bacteria, gener-
ate AMD. AMD can originate from various sources, including tailings, waste rock, 
and mine structures, leading to environmental degradation and negative impacts on 
ecosystems. Untreated AMD can harm human health, animals, plants, and aquatic 
life due to its acidic and metal-laden nature. Remediation methods aim to treat or 
recover AMD before its release into water bodies, with approaches falling into active 
and passive categories. Traditional remediation methods may generate new waste 
streams and residual materials requiring further treatment and disposal.

AMD is being explored for metal recovery as part of a comprehensive remedi-
ation strategy to meet environmental regulations and recover valuable materials. 
Metal recovery can reduce waste handling and disposal, create revenue streams, and 
enhance the sustainability of mine water treatment projects. The most commonly 
used method for metal recovery involves precipitating hydroxide compounds from 
AMD using alkaline reagents such as NaOH. Challenges of this method include con-
centrated sludge generation and the difficulty of selectively extracting metals.

Various techniques exist for treating AMD and recovering metals, such as wet-
land treatments, electrodialysis, ion exchange/adsorption, ultrafiltration, solvent 
extraction, and reverse osmosis. These methods offer the potential for recovering 
other beneficial materials, such as electricity, alkaline earth substances, building 
materials, agricultural products, adsorbents, and pigments. Recovery of saleable 
products like sulfur, sulfuric acid, pigments, and metal sulfates can contribute to rev-
enue generation and offset treatment costs. AMD treatment techniques can promote 
sustainable mine water management while producing valuable materials for various 
industries (Dhir, 2018; Bergerson and Lave, 2004). As technological advancements 
continue, innovative approaches to AMD remediation and metal recovery hold the 
promise of minimizing environmental harm and contributing to sustainable resource 
management (Kefeni et al., 2017; Akcil and Koldas, 2006).

1.7.3 �M etallurgical Dust

In the off-gas from smelting and refining furnaces, complex oxides from feed and 
process materials are mixed heterogeneously to form metallic dust. Blast furnace 
ironmaking, raw material agglomeration (such as coke, sinter, and pellet plants), elec-
tric arc furnaces (EAFs), basic oxygen furnaces (BOFs), stainless steel refining, base 
metal smelting and converting, and submerged arc furnaces (SAFs) for ferrochrome 
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and ferromanganese production are just a few processes that produce significant 
amounts of these waste materials (Krishnan et al., 2021).

Metallurgical dust’s physicochemical characteristics vary significantly depending 
on the process design, parameters, operational practices, and type of raw materi-
als employed. For instance, for each tonne of hot metal (tHM), approximately 7–45 
kg of blast furnace particle dust containing 100–150 g of Zn is produced. Because 
they include harmful metals such as Pb, Cr, Zn, and Cd, these materials are typi-
cally categorized as hazardous waste and cannot be dumped in landfills without first 
undergoing pretreatment and/or stabilization. Direct in-process recycling is typically 
restricted due to the possibility of a build-up of hazardous and volatile metal com-
pounds (Kumari and Samadder, 2022). For instance, the metallurgical dust generated 
during the production of iron and steel mostly consists of heterogeneous mixes of 
complicated feed material oxides entrained in the off-gas. These materials frequently 
have high concentrations of iron, reductants, and alloying elements.

Numerous methods have been developed or are being investigated to recover 
the significant metallic components present in metallurgical dust while guaran-
teeing a non-destructive barren outcome. Pyrometallurgical and hydrometallurgi-
cal techniques are the two main alternatives for recovering valuable metals from 
ferrous metallurgical dust. In the former, the necessary metals are separated from 
other materials using thermal energy based on variations in the oxidation poten-
tials, melting temperatures, vapor pressures, densities, and/or miscibility of the dust 
components when melted. In hydrometallurgical technologies, the necessary metals 
are separated while in an aqueous solution, utilizing methods that take advantage of 
variations in constituent solubilities and/or electrochemical characteristics.

The existence of volatile hazardous metal compounds such as Zn, Cd, As, and Pb 
restricts the direct recycling of ferrous dust (Turner et. al., 2021). Due to the strong 
reliance on the use of scrap galvanized steel as feed to these operations, Zn-bearing 
compounds like zincite (ZnO) and franklinite (ZnFe2O4) are particularly problematic 
in the steelmaking process. The carbothermic reduction sequence ZnFe2O4(s) ZnO(s) +  
Fe2O3(s) Zn(v) + Fe(s) of ZnFe2O4 in dust, and the subsequent volatilization of the 
zinc before recovery in the downstream condensers, are the key components of the 
pyrometallurgical processing of ferrous dust. To recycle ferrous metallurgical dust 
economically, several pyrometallurgical techniques have been widely used through-
out the world to date. The capacity to handle metallurgical dust with high levels of 
Zn present as ZnFe2O4 cheaply is one of the main benefits of the pyrometallurgical 
techniques discovered to date. Although these procedures involve complex dust col-
lection systems, extra steps must be taken to recover volatile metals from the flue gas, 
and they are sensitive to economies of scale.

In comparison, hydrometallurgical processes have lower startup costs and few or 
no environmental issues related to flue gases, dust, and noise, but they also require 
careful management of water, wastewater, and process solutions to be technically and 
economically feasible. The complex physical, chemical, and mineralogical features 
of the dust components have significantly limited the broad use of hydrometallurgi-
cal processes. Poor selectivity and dissolution are additional issues with hydrome-
tallurgical processes using traditional leaching and chelating media, which add to 
the complexity of subsequent solution purification procedures. Consequently, several 



21Novel Methods for the Remediation of Mining Waste Residues

substitute leaching and pretreatment procedures have been developed to improve the 
kinetics and economics of traditional methods.

Table 1.3 summarizes some of the distinguishing properties of several groups of 
metallurgical dust and options for their recycling.

1.7.4 �M etallurgical Slags

Metallurgical slags are created in enormous quantities during pyrometallurgical 
smelting and refining operations and are essential for the effective extraction of met-
als. Slag separates from the metal or alloy during the smelting and refining operations 
and is removed from the furnace before being ground or slowly cooled. Solidified 
metallurgical slags contain considerable levels of entrained and/or dissolved metals, 
which, depending on the process design and conditions, can seriously impact the 
environment in the long run (Kaniki et al., 2019). Process slags are currently disposed 
of in landfills, which poses environmental problems. As a result, extensive efforts to 
improve these materials’ potential for recycling and reusing must be made (Gaskell, 
2007). Numerous studies have concentrated on the uses of metallurgical slags in 
different areas of the economy, including as building materials, in the production of 
ceramics and other functional materials, and as polymeric materials. However, one 
of the main obstacles to the recycling and reuse of these materials continues to be the 
presence of entrained and/or dissolved hazardous metal components as well as the 
build-up of deleterious elements in the slag.

1.7.5 �P ost-Consumer Waste

Post-consumer trash is any garbage produced by households, businesses, industries, 
or institutions after a product has been used to its full potential and is no longer use-
ful for that purpose. The amount of these anthropogenic materials has dramatically 
grown as a result of the growing global population, technological advancements, 
and increased use of natural resources. Unused and/or outdated goods are typically 
disposed of in landfills, posing environmental issues. Reducing environmental harm 
while promoting sustainable development objectives through the effective use of 
resources can be accomplished by viewing these materials as anthropogenic sources 
of secondary resources that can be recycled and reused (Singh and Ordoñez, 2016). 
Numerous studies have been done to recover valuable metals from used auto cata-
lysts and electronic trash utilizing both established aqueous leaching and chelating 
medium and newly developed non-aqueous leaching and chelating media. To date, 
several methods for recovering metals have been developed, including biohydrome-
tallurgy and complexing agents including cyanide, halides, thiosulphate, thiourea, 
and acidic media. Recently, the focus has been on employing ionic liquids to recover 
precious elements from used auto catalysts and e-waste.

Due to their desired qualities, such as non-volatility, low toxicity, good ionic 
conductivity, and a broad electrochemical potential window, ionic liquids, low-
temperature molten salts containing cations and organic/inorganic anions are 
increasingly being researched for the extraction of metals. Ionic liquids can recover 
valuable metals from used auto catalysts and electronic waste in their pure form with 
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TABLE 1.3
Typical Properties of and Recycling and Mitigation Processes for Metallurgical Dust (Tian et al., 2021;  
Makhathini et al., 2023)

Category Characteristics Recycling and mitigation Challenges to recyclability

Blast furnace dust 7-45 kg of dust/tHM;  
100-150 g Zn/tHM

Briquetting and in-process recycling as 
additional sources of iron and carbon.

The accumulation of volatile metal compounds, 
organometallic compounds, and polychlorinated 
dibenzo-p-dioxins and dibenzofurans (PCDD/
Fs) during processing limits the amount of 
material that may be recycled. Complex off-
gas cleaning systems are necessary, although 
fugitive emissions may still be an issue.

Coke plant dust Varies (approx. > 1 kg coke 
breeze/ton coke

Additives in the sinter plant as auxiliary 
fuels and reductants.

Ferrous raw material 
agglomeration

Varies Briquetting and in-process recycling as 
well as auxiliary additives in the blast 
furnace and EAFs.

Basic oxygen furnace (BOF) 
dust

14-143 kg dust/t liquid steel 
0.75-24 kg/t liquid steel

Briquetting and in-process recycling. 
Metal recovery using pyrometallurgical, 
hydrometallurgical, and plasma 
processes. Solidification and/or 
stabilization.

Controlled material is necessary since it is unclear 
how harmful metal components would behave 
over an extended period in stabilized/solidified 
dust. The accumulation of volatile metal 
compounds during processing, the changing 
value-metal thresholds, and the complicated 
chemical and mineralogical properties of 
the dust all limit recycling potential. Costly 
additional metal recovery procedures.

Electric arc furnace dust 
(EAFD)

15-20 kg dust/t steel. Over  
8.5 Mt are produced per year
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Stainless steel-making dust 10-70 kg dust/t HCFe Cr

Submerged arc furnace 
(HCFeCr)

18-25 kg dust/t HCFe Cr Process-integrated dust recycling 
systems. Emissions reduction by 
mandatory adoption of closed furnaces, 
agglomeration of feed, use of intricate 
wet scrubbing systems, and control of raw 
material quality and process parameters.

Variable value-metal thresholds and in-process 
accumulation of volatile metal compounds 
limit the ability to recycle. The issue of fugitive 
emissions persists. Complex wet scrubbing 
systems can be expensive and occasionally 
unavailable.

Submerged arc furnace 
(HCFeMn)

Up to 25 wt% Mn and varying 
amounts of volatile metals.

Base metals (copper) smelter 
dust

Up to 30 wt.% Cu and high 
amounts of Fe, S, Zn, and 
metalloids (As, Sb, Pb, Cd, Bi)

In-process recycling of smelter dust. 
Metal recovery using conventional 
pyrometallurgical and hydrometallurgical 
processes, or a combination of both.

The accumulation of harmful, volatile toxic 
metals (such as As, Sb, Pb, Cd, and Bi), low 
value-metal thresholds, and the complicated 
chemical and mineralogical features of the dust 
all hinder the recyclability of smelting dust.

PMG smelter and converter 
dust

Varying amounts of entrained 
PGMs, Fe, S, Zn, and 
metalloids (As, Sb, Pb, Cd, Bi)
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great selectivity, while detoxifying and creating residues that are safe for the envi-
ronment (Islam et al., 2020).

1.8 � CONCLUSION AND FUTURE TRENDS

We have provided a comprehensive overview of the concept of emerging contami-
nants, the challenges they pose, and the various approaches used for their treatment 
and remediation. Bioremediation, which involves the use of living organisms (usually 
microorganisms) to degrade, transform, or remove contaminants from soil, water, 
or air, stands out as a promising and efficient method for restoring contaminated 
areas, leveraging the natural capabilities of microorganisms. However, its success 
depends on factors such as microbial degradation potential (the ability of microor-
ganisms to enzymatically degrade specific contaminants); the availability of nutrients 
such as carbon, nitrogen, and phosphorus, which microorganisms require for their 
growth and metabolism; and the abundance and diversity of microbial populations at 
a contaminated site. In some cases, adding nutrients to a contaminated site (a process 
called biostimulation) can enhance microbial activity and accelerate bioremediation. 
Introducing specific microbial strains or consortia can help enhance degradation 
capabilities. Different contaminated sites present unique challenges, including vari-
ations in soil composition, hydrology, and contaminant types. Tailoring bioremedi-
ation strategies to the specific conditions of each site is essential for optimal results.

Bioremediation is effective primarily for contaminants that can be broken down 
by microorganisms. Some compounds may be recalcitrant (resistant to degradation) 
or require extended treatment times. In such cases, alternative technologies such as 
oxidation processes, advanced oxidation processes, and membrane technologies are 
employed. Given the complex and evolving nature of emerging contaminants, ongo-
ing research is crucial for developing innovative and efficient treatment strategies. 
This includes exploring new microbial strains, optimizing bioremediation condi-
tions, and integrating various technologies for enhanced remediation outcomes.

In conclusion, the field of emerging contaminants and their remediation is multidis-
ciplinary and rapidly evolving. Bioremediation is a powerful tool, but its application 
needs to be carefully tailored to specific contamination scenarios. Combining biore-
mediation with other advanced technologies can provide comprehensive solutions for 
tackling the challenges posed by emerging contaminants in our environment.
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